ارزیابی شکنندگی مالی بانک ها با بکارگیری روش شبکه عصبی
Authors
abstract
پیش بینی تداوم فعالیت یک بانک در دوره های آتی، یکی از عناصر مهم در تصمیم گیری ناظران بانکی بوده و در این میان، انتخاب متغیر پیش بینی کننده و روش مناسب، به عنوان یکی از مسائل چالش برانگیز در ادبیات پیش بینی شکنندگی مالی مطرح بوده است. یکی از پیشرفته ترین مدل های پیش بینی کننده شکنندگی مالی، مدل شبکه عصبی است. در نمونه مورد بررسی در این مقاله، ابتدا با بهره گیری از ادبیات نظری و تجربی، شاخص شکنندگی مالی متناسب با ساختار شبکه بانکی کشور تعریف شده و سپس با به کارگیری آزمون t معنی داری نسبت های مالی مورد نظر و بر اساس آماره لوین میانگین دو نمونه در سطح اطمینان 95 درصد، مورد آزمون قرار گرفته و سپس با انتخاب نسبت های مالی معنی دار که قدرت توضیح دهی در مدل داشته باشند، مدل شبکه عصبی طراحی گردید. برای آزمون دقت و صحت مدل از جدول طبقه بندی و منحنی roc استفاده شد. نتایج بررسی بیانگر قدرت پیش بینی 96 درصدی مدل طراحی شده است. همچنین بر اساس یافته های این مقاله، ریسک اعتباری و ریسک نقدینگی، از مهمترین عوامل توضیح دهنده شکنندگی مالی هستند.
similar resources
ارزیابی شکنندگی مالی بانکها با بکارگیری روش شبکه عصبی
پیشبینی تداوم فعالیت یک بانک در دورههای آتی، یکی از عناصر مهم در تصمیمگیری ناظران بانکی بوده و در این میان، انتخاب متغیر پیشبینی کننده و روش مناسب، به عنوان یکی از مسائل چالش برانگیز در ادبیات پیشبینی شکنندگی مالی مطرح بوده است. یکی از پیشرفتهترین مدلهای پیشبینیکننده شکنندگی مالی، مدل شبکه عصبی است. در نمونه مورد بررسی در این مقاله، ابتدا با بهرهگیری از ادبیات نظری و تجربی، شاخص شکنند...
full textمنحنی شکنندگی لرزه ای پل بتنی با معیار شکل پذیری ستون و رویکرد شبکه عصبی
هدف این مطالعه، ارائه منحنی های شکنندگی لرزه ای پل بزرگراهی بر مبنای پیش بینی های مبتنی بر شبکه عصبی است. در سال های اخیر، منحنی های شکنندگی، علاوه بر روشهای تجربی و کارشناسی، اغلب با استفاده از روش تحلیلی تهیه می شود. در این مطالعه،منحنی های شکنندگی لرزه ای پل خمیده افقی بر مبنای پیش بینی های شبکه عصبی و تمرکز بر روی شاخص شکل پذیری ستون بتنی با استفاده از 129رکورد زمین لرزه نشان داده می شود.رک...
full textپیش بینی منابع مالی بانک با استفاده از مدل خطی( ARIMA) و غیرخطی شبکه های عصبی مصنوعی فازی
یکی از مهمترین موارد مورد علاقه مدیران بانکی به عنوان متغیری تأثیرگذار بر صنعت بانکداری، اطلاع از وضعیت سپردههای بانکی است که فعالیت بانک تا حد زیادی بستگی به آن دارد. ازاینرو مدیران بانکها علاقهمند هستند بدانند که میزان کل سپردههای بانک در زمان معینی در آینده چقدر خواهد بود. پیشبینی میزان سپردهها، تغییر و نوسان این سپردهها میتواند در امر برنامهریزی و تصمیمگیری به بانکها کمک نماید....
full textشناسایی محل بانک خازنی کلیدزنی شده در شبکه توزیع با استفاده از شبکه عصبی-فازی
در این مقاله، روش جدیدی برمبنای سیستم عصبی فازی (ANFIS) برای مکان یابی بانک خازنی کلیدزنی شده در شبکه توزیع ارائه می شود. این روش بر اساس شاخصی عمل می کند که از طریق آنالیز حالت گذرای جریان بدست می آید و از این شاخص برای آموزش شبکه عصبی فازی استفاده می شود. این شاخص را می توان بصورت Offline یا Online بوسیله ی اطلاعات کیفیت توان سیستم محاسبه نمود. روش بیان شده فقط از شکل موج حالت گذرای جریان است...
full textMy Resources
Save resource for easier access later
Journal title:
سیاست گذاری پیشرفت اقتصادیجلد ۳، شماره ۷، صفحات ۲۹-۵۸
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023